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1 Introduction

In the thread Non-Linear Randomly-Generated Dungeon, thecoldironkid wrote:

For my game, I am attempting to write a series of dungeon tables
(somewhat like Appendix A in the DMG, but tailored to my own ma-
terial) so that I can generate game content randomly, at the table, on
the fly.

As an aside: DMG Appendix A largely reproduces material from the article “Solo
Dungeon Adventures” by EGG in The Strategic Review Vol. 1 No. 1 Spring 1975,
which appears in the thread Gygax OD&D Additions.

thecoldironkid continues:

However, what I’ve come up with (like the tables in the DMG) can only
produce endlessly-branching nodes without making explicit provision
for “loops” or a “jacquayed dungeon” or whatever you want to call it.
Is the only way to achieve a more complex, interconnected dungeon in
this manner to wait for the ever-expanding map to just run into itself,
and then decree, “Yup, this is where the loop is”? Maybe someone here
has some insight into this that I’m missing?

Yes, this mechanism produces “dendritic” dungeons, rather than lairs with loops
or meandering mazes. This, I argue below, is a good thing, because most natural
cave systems have this branchwork pattern.

If you want a different dungeon topology, then you need a different mechanism.

In the thread on flow-chart style mapping for the DM too, I wrote several posts
about using graphs as dungeon maps.

Below, I’m going to present three different graph-basedmechanisms for generating
dungeons, each one targeting a different topology:

1. loopy lairs
2. meandering mazes
3. (dimensionally dependable) dendritic dungeons

A graph is just a set of vertices (aka nodes) and edges connecting them. In a
planar graph, the edges divide the plane up into faces (aka regions). At the bottom
of this post, I provide an appendix with a crash course on graphs that explains this
terminology in more detail. Here’s how I interpret what “vertex” and “edge” and
“face” mean in each context:
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1. In a lair with loops, a vertex represents either a room or some other interest-
ing area on the map. An edge connects these areas. Its an “exit” – it could be
an archway, a portcullis, a wooden door, a locked iron door, a secret door, a
trap door, a teleportation device, a wormhole; or it could be a twisty passage,
a hallway with a corner, a bridge, a long straight sloped narrow tunnel,… in
short, any way to get from one area to another. A face is just the solid wall
or rock separating areas.

2. In a meandering maze, a face represents a room/region/area, and an edge
represents a wall. (Vertices merely represent junction points where walls
come together.)

3. In a dendritic dungeon, a vertex represents a cavern and edges just show
how they’re connected.

2 Loopy Lairs

In this section, I’m going to explain how I’d tackle the problem of generating dun-
geons with loops. This section is subdivided into two parts:

1. The Erdős-Rényi Model: A naïve method. Easy to understand. Simple to per-
form. But it doesn’t scale well for large dungeons. And it produces dungeons
with properties that may be undesirable.

2. The Five Room Dungeon Model: My preferred method. Works by using a
d20 roll and a table lookup, just like DMG Appendix A. One iteration only pro-
duces a small graph corresponding to a five room dungeon. But the method
may be applied recursively, in order to produce bigger and bigger dungeons.

2.1 The Erdős-Rényi Model

Here’s a naïve method for randomly generating a dungeon from a graph:

1. Grab an N -sided die.
2. Grab a piece of graph paper and a pencil.
3. Randomly dot the paperN times and label these dots 1, 2, . . . , N . These dots
are called vertices.

4. Next roll your dN twice, to produce two numbers X and Y .
5. Draw an edge from vertex X to vertex Y .
6. Repeat steps (4)-(5) M times. You want to make M big enough so that your
graph has the desired topological properties – connectedness, cycles, etc.
But you wantM small enough so that the resulting graph doesn’t look like a
“hairball” – a big mess.

7. Now interpret each vertex as a room or other interesting area on your map;
and interpret each edge as an “exit” such as a door or corridor, leading to
another area.
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This method is very easy to perform but lacks sophistication. Theoretically, you
could randomly generate any graph with N vertices and M edges, just as if you
took them all, put them into a hat, shook it around, and pulled out one at random.
This model for generating random graphs is called the Erdős-Rényi Model.

But there are some issues with this method:

• If you start with a big N , say N = 20, then you are going to need a suitably
big M , maybe M = 50, to get a graph with that’s connected and has cycles.
That means rolling 100 times to generate the edges! That’s easy enough to
do on a computer, but it’s not something you can easily do on-the-fly at the
game table.

• There’s no guarantee that the resulting graph is planar – one that may be
drawn in a plane with no edge crossings.

• The degree distribution (probability that a vertex has somany incident edges)
follows a Poisson Distribution. That’s not how real-life networks (like cave
systems, streams, your circulatory system, trade networks in free markets,
facebook or the internet) behave – the degree distribution of those graphs
follows a Power Law. A power law distribution looks like f(x) ∝ x−γ . This
distribution only has a well-defined mean if γ > 2, and it only has a finite
variance if γ > 3.

If you want a fast, automated way to generate Erdős-Rényi random graphs, then
you might use WolframAlpha, a free online “computaional knowledge engine.”
Here’s a sample query that produces a random graph with 10 vertices and 25
edges.

2.2 The Five Room Dungeon Model

In Roleplaying Tips #156, Johnn Four presents his Five Room Dungeon Model. I
like that model. I’m not going to rehash it here. But I find it easy to create dungeons
on-the-fly in five room “chunks.”

As good fortune would have it, there are exactly 20 nonisomorphic simple con-
nected planar 5-graphs! So the first step is to roll a d20 on the following table, in
order to determine the topology of the next five-room hunk of the dungeon:
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Table 1: Graph Type

d20 Die Roll Graph Name Graph Image

1 bull

2 butterfly/hourglass

3 C5 (cycle)

4 co-fork

5 co-P

6 cricket
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d20 Die Roll Graph Name Graph Image

7 dart

8 fork/chair

9 gem

10 house

11 K1,4
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d20 Die Roll Graph Name Graph Image

12 K2,3

13 K5 − e

14 claw ∪ K1

15 K3 ∪ 2K1

16 P2 ∪ P3

17 P3 ∪ 2K1
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d20 Die Roll Graph Name Graph Image

18 P
19 P5 (path)

20 W4 (wheel)

All we’ve done so far is to determine the topology of this part of the dungeon.
Topology is not the same geometry. Topology just tells us how our five rooms are
wired together – not about their sizes, their shapes, or even their relative positions!

One way to determine room size and shape would be to cut various shapes and sizes
out of cardboard, stick them in a hat, sack or bag, and pick them out at random
when you need them.

An alternative method would be to roll dice and use a lookup table.

Whichever method you use, feel free to “overrule” any random results and replace
them with your own judgment or cool feature that just popped into mind.

The following tables may be used to determine room size, shape and exit types.
Note that you do not need to roll in advance for all five rooms – you only need to
roll for the areas your players are actively exploring!

Table 2: Room Sizes (S-M-L-XL)

2d6 Die Roll Room Size

2 Extra Small (XS): less than 20 sq. ft.
3 - 4 Small (S): 2d6 x 10 ft. sq.
5 - 9 Medium (M): d6 x 100 ft. sq.
10 - 11 Large (L): 2d6 x 100 ft. sq.
12 Extra Large (XL): d6 x 1,000 ft. sq.
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Table 3: Room Shape

2d6 Die Roll Room Shape

2 natural cavern or lake
3 triangle
4 circle
5 trapezoid
6 - 8 rectangle
9 square
10 oval
11 semicircle
12 uncommon shape (d6): (1) pentagon, (2)

pentatgram/5-pointed star, (3) hexagon, (4)
hexagram/6-pointed star, (5) octogon, (6) outdoors or huge
mystical space of indeterminate size/shape

(As an aside, sometimes room shape suggests the contents: A hexagonal room
suggests honeycombs with giant bees. A pentagram-shaped room suggests robed
Satanists, a sacrificial altar and a giant statue of Baphomet.)

Relative room positions: As you assign sizes and shapes to the five rooms, you may
need to “push them apart” so that they’ll fit on your map. Keep your descriptions
consistent with what you’ve already told the players. But you’re free to rotate or
translate the unexplored graph vertices and edges. Just avoid edge crossings.

Since the topology doesn’t tell us what kind of “exit” an edge represents, here is a
table to determine the nature of each edge/connection in the graph:

Table 4: Exit Type

2d6 Die Roll Exit Type

2 down a… roll a d6: (1) sliding pole, (2) chute, (3) ladder,
(4) trap door in floor, (5) steps, or (6) sloped passage

3 bridge over a… roll a d6: (1-3) chasm or (4-6) stream;
bridge type (d6): (1-2) rope bridge, (3) stone bridge, (4)
lowered drawbridge, or (5-6) raised drawbridge; for the
chasm/stream itself, use the rules for a dendritic dungeon
below

4 portcullis or bars
5 double doors
6 open doorway or archway or curtain
7 door (d6): (1) wooden/open, (2) wooden/closed/unlocked,

(3) wooden/closed/locked, (4) iron/open, (5)
iron/closed/unlocked, (6) iron/closed/locked
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2d6 Die Roll Exit Type

8 corridor (d6): (1) twisty passage, (2) sewer pipe, (3)
hallway with a corner, (4) long straight narrow tunnel, (5)
stream, or (6) meandering maze (see section below)

9 secret door or hidden door (e.g., trapdoor under rug,
sliding bookcase, moveable wall, or crack behind
waterfall)

10 revolving doorway or one-way door
11 window, crack or hole (e.g., giant rat hole)
12 up a… (d6): (1-2) spiral staircase, (3) ladder, (4) rope, (5)

chimney, (6) cracks/outcrops in wall for climbing

The topology doesn’t tell us the exact location of these exits. Best to judge this on
a case-by-case basis, based on relative room positioning.

As your players explore each area of the map, you’ll also need to fill each room with
monsters, treasures, traps and other features. I’m not providing tables for that…
For monsters and treasure, I use the Distribution of Monsters and Treasure rules
on pages 6-8 of U&WA/Vol. 3. This in turn uses the MONSTER DETERMINATION
AND LEVELOFMONSTERMATRIX on pages 10-11 of U&WA/Vol. 3. For traps, use
TABLE VII. TRICK/TRAP in the aforementioned “SOLO DUNGEON ADVENTURES”
article.

2.2.1 Example: Translating the House Graph into a Five Room Dungeon

I have implemented these tables in Palamedes, the online dice roller and probability
calculator I developed. The script is here. You can run it with this link. And here
is a screenshot of the output.
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So first I generated the Graph Type and got a House Graph. Next I clicked Room
Size 5 times, then Room Shape 5 times. Finally I clicked Exit Type 6 times, since
this graph has 6 edges.

And here is how I translated these results into a map:

Then I applied Johnn Four’s Five Room Dungeon Model to flesh it out a little:
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1. Entrance And Guardian. Medium (L): 500 ft. sq. Shape: rectangle about
45’10” x 10’11.5”. This is the entrance to the dungeon. On the S wall of
the room to your right as you enter is a closed wooden door. On the S wall
to your left as you enter you can see a room filled with exquiste treasures:
gold, jewels, weapons. But a set of iron bars deny you entrance to this room.
There’s another party of adventurers trying in vain to hack their way through
the bars. One of them turns your way, sneers at you, and says: “GTFO now
or die!” DM only: The bars only open from the other side!

2. Puzzle Or Roleplaying Challenge. Extra Large (XL): 1,000 ft. sq. Shape:
square about 31’7” x 31’7”. There is a closed locked iron door on the E wall
near the N corner (the key is in room 4). Most of the E side of this room has
a deep chasm running N-S, due to cave-ins or collapse. The chasm is about
10’ across. There is a rope bridge across the chasm near the SE corner. DM
only: This chamber is collapsing, creating a death trap! Imagine an 8x8
chessboard-like grid overlaying it (see map). If the players step on a “black”
square (marked with an X), it immediately collpases. Make a saving throw
or suffer d6 damage. Plus it takes time to climb out. If the players map this
out, they will realize it is a simple puzzle and can avoid further injury by only
stepping on the “white” squares!

3. Red Herring. Medium (M): 600 ft. sq. Shape: rectangle about 31’6” x 19’.
There are treasure chests here and weapons scattered about. There is also
a giant hole in the N wall – looks very dark inside. DM only: The treasure
chests are filled with rat poop and the weapons here are all rusted!

4. Climax, Big Battle Or Conflict. Small (S): 40 ft. sq. Shape: square about
6’4” x 6’4”. This is the nest of some giant rats. It’s pitch black. And a very
tight space in which to fight. The N side has an open archway to the treasure
room. DM only: The rats have the key to the locked iron door.

5. Plot Twist. Small (S): 80 ft. sq. Shape: semicircle about 14’3” diameter.
The treasure awaits! The players must have realized by now that this area
is geologically very unstable. As they enter this treasure room, the treasure
caves into the chasm – lost forever in a bottomless pit! The players get lucky
– they only fall 10’ into the next lower chamber of this dungeon.

2.2.2 The 25, 125, …, 5n Room Dungeon

Since you will eventually need something bigger than a five room dungeon, I sug-
gest the following recursive method:

Roll a d20 on the Graph Type Table shown above. Call this result the “outer” dun-
geon or dungeon “skeleton.” Interpret each vertex in this skeleton as a separate
five room dungeon and roll 5† more times on the Graph Type Table to determine
the topology of each of these 5 “inner” five-room-dungeons. You’ll need to add ex-
tra exits to each inner dungeon in order to fit them into the outer dungeon, e.g.,
if a vertex in the outer dungeon has 3 incident edges, then the corresponding five
room dungeon requires 3 extra exits. To add these extra exits, label the vertices in
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the inner graph 1-5 and roll one d6 (reroll on 6) to see where each extra exit goes.

A third iteration of this method yields a 125 room dungeon. You can use n iterations
to create a 5n room dungeon.

† Note that you do not need to generate all 5 subgraphs at once! You only need
to roll for the subgraph(s) in the vicinity where your players are exploring. This
“partial application” of the recursive function makes this method fast and scalable.

3 Meandering Mazes

Since the question was about loops, not mazes, I won’t go into much detail here.
First, I want to reiterate that you need a specialized mechanic for creating mazes.
Second, I want to point out the usefulness of graphs in generating mazes. Here is
the outline of a graph-based maze generation mechanic:

1. Generate a random planar graph G (shown in blue)
2. Compute G∗, the dual of G (shown in yellow) – see the Appendix below for
an explanation of a dual graph

3. Traverse G∗ using a depth-first search, coloring the path red.
4. During the traversal, whenever a red edge crosses over a blue edge, the blue
edge is removed.

5. When all vertices of G∗ have been visited, G∗ is erased and two edges from
G, one for the entrance and one for the exit, are removed.

The following image, doctored from the animated GIF on Wikipedia’s Maze gener-
ation algorithm page, illustrates how this algorithm works:
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4 Dendritic Dungeons

I happen to like a branchwork-pattern dungeon, particularly in the lower levels.
That’s because it feels “natural.” Let me explain…

4.1 Speleogenesis

(Disclaimer: I am not a geologist – just a hobbyist. In high school, I co-founded
the Earth Science Society, wrote for the its monthly periodical, organized fossil-
hunting trips to regional quarries, etc.)

There are many mechanisms by which nature constructs caves:

• Glacier caves: formed by melting ice
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• Talus caves: formed by the openings among large boulders that have fallen
down into a random heap at the bases of cliffs

• Littoral caves: formed by wave action on sea cliffs
• Lava tubes: formed through volcanic activity – lava flows downhill and its
surface cools and solidifies, but hot liquid lava continues to flow under that
crust, and if most of it flows out, a hollow tube remains

• Karst caves: formed from acid dissolving limestone, chalk, dolomite, marble,
salt, and gypsum.

Karst caves from limestone dissolved by rainwater and groundwater are the most
frequently occurring type of cave. Water itself is not acidic and can’t dissolve
limestone. But rainwater picks up CO2 from the atmosphere to produce carbonic
acid:

H2O + CO2 −→ H2CO3

Carbonic acid is weak, but over a tens of million years, it eventually carves caves
out of limestone. To get an idea how slow this process is: Water charged with
carbonic acid dripping through the ceiling of a limestone cavern forms stalactites
at a rate of one centimeter per millennium. Dissolved limestone deposited on the
cavern floor forms stalagmites at the same rate. Columns form when the two have
enough time to meet.

The limestone itself has an interesting history: 350 million years ago, there was
just one super-continent, Pangaea. It was surrounded by a huge coral reef. When
Pangaea broke apart, this reef got smashed apart and compressed into limestone.
It’s possible to find examples of limestone that still visibly contains the fossilized re-
mains of the coral and seashells it is made from, because they weren’t all smashed
and compressed.

There are 4 main patterns of karst cave shown here (excerpted from The pattern of
caves: controls of epigenic speleogenesis by Philippe Audra and Arthur N. Palmer):
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1. Branchwork caves: 57% of all caves by number and 65% of aggregate cave
length is branchwork. Because karst caves form from flowing streams, it
makes sense that these caves usually have the same acyclic branching struc-
ture as streams. So branchwork caves are the most common pattern
of cave! There are nevertheless some naturally ocurring cave patterns with
loops…

2. Network caves: 17% of all caves in both number and length. Closed loops
are common.

16



3. Anastomotic caves: Braided pattern. 3% of all caves, but 10% of aggregate
cave length.

4. Spongework caves: 5% of all caves, but only 1% of aggregate cave length.
This is a 3D pattern rather than 2D – in spongework caves, there are vertical
flows, not just horizontal flows in a tilted plane.

So these 4 cave patterns account for 82% of caves by number and 93% by aggre-
gate cave length. (Stating this the other way around, all other cave patterns only
account for 18% of caves by number and 7% by aggregate cave length.)

Mammoth Cave in Kentucky and Jewel Cave in South Dakota are the 1st and 3rd
biggest cave systems in the world by length.

Mammoth Cave has a surface area of 80 square miles, it runs 407 feet deep, but
the underground cave network is a whopping 405 miles long! In another thread,
I mentioned howMammoth Cave and a 1975 D&D game were the dual inspirations
for the Colossal Cave Adventure – the first computerized interactive fiction game.

Jewel Cave is 182 miles long and 723 feet deep. Here is a map of Jewel Cave
from the National Park Service – click here to see more detail (5,996px × 5,354px,
1.8MB jpg). You can see it has a dendritic pattern:
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Loops occur where streams diverge and and meet again further downstream. This
occurs because the chemical composition of the rock varies from place to place,
and the chemical composition of the water varies over place and time. In some
areas and at certain times, you’ll have microbes that take CO2 out of the water;
at other places and times, they’ll add more CO2 to the water, making it more
acidic; and some microbes generate SO2 instead of CO2, which creates sulfuric
acid, H2O + SO2 −→ H2SO3, a very strong acid.

In sum, most caves are formed by fluid flow. So the same equations that govern
fluid flow also govern speleogenesis. Except that the parameters in these differ-
ential equations vary over place and time with differences in geochemistry and
biochemistry. Therefore, you could generate random dungeons by simulating lam-
inar and turbulent flow of acids over rocks. But I can’t recommend this method for
generating random dungeons on the fly for tabletop use.

4.2 Mining and man-made caves

In the middle ages, castles were built from sandstone blocks. Sandstone is one of
the most common minerals in the earth’s crust. And it’s soft enough to be carved
into blocks with hand tools. But in order to “glue” the sandstone blocks of a castle
together, engineers in the middle ages made lime mortar out of a slurry of water
and kiln-fired lime. In addition, they whitewashed the sandstone with limewash.
(I wrote about the real-life time and cost of constructing a castle in the thread on
Building the Stronghold- calculating time.)

Even further back, the Egyptians and Romans made lime cement. In 2006, scien-
tists used a scanning electron microscope and found that the air bubbles in the
stone blocks used in the Pyramids did not occur naturally in quarried limestone,
a blow to the old theory that these stones were quarried and dragged into place,
and a boost the new theory that the stones were cast from lime cement.

All of these uses for limestone created a high demand for it. When ancient and
medieval people wanted to construct a cathedral or a castle, they used lime from
local sources within 3-5 miles, because the cost of transporting it was so high. They
would use hand tools to dig mines and pits (quarries). They dug by candle light.
They used child labor and unskilled labor to do the initial work of carving out the
stone, which would then be finished by a skilled stonemason. Here’s a map of the
Beer Quarry Caves in Devon. There is a triangular loop in the north side. The
south side is just one big chamber help up with columns:
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When exploring caves or quarrying rocks, people noticed veins of precious ores
(gold, silver, copper) and metals useful for construction (like lead). They would dig
out these veins, creating new mines.

Mining is very difficult and dangerous work. It risks:

• tunnel collapse
• releasing toxins into the air, soil, and water

Miners do back-braking work for little compensation; they develop poor health;
and they often die young.

4.3 Teratogenesis

Due to the dangers posed by mining, it’s easy to imagine that in a medieval fantasy
setting, warriors, wizards and clerics would create a cheap and disposable mining
workforce – troglobites. It’s also easy to imagine that these cave-dwelling slaves
would grow to resent their human masters and would rebel. At least that’s how I
imagine monsters got their start.

Because many caves have small passages, many races of monster would be smaller
than humans, like goblins; but because it is also necessary to drag large stones,
some monsters would be huge, like ogres. Living and working in dark caves, most
monsters have infravision. Due to their struggle against their former human slave
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masters, monsters hate Law and side with Chaos. Since their main skill is quarry-
ing stones and mining ores, monsters are experts at cave construction.

Monster-made caves are much more intricate than natural caves or man-made
mines. Monster lairs have an abundance of loops and labyrinths and traps to con-
fuse and catch human trespassers.

4.4 Randomly-Generating Branchwork Patterns

Okay. Maybe I’ve convinced you that a genuine branchwork pattern cave/chasm/stream
would be a cool addition to your dungeon… How does one randomly generate such
a thing? We’re going to build it as a tree as follows:

1. Let N be the Strahler number of the network. Pick something manageable:
4 or 5.

2. Start with the root node. Call it i. Give it Strahler number ω(i) = N . Re-
member that nodes (not edges) represent a cavern in a cave, a crevasse in a
chasm, or a stretch of stream in a river.

3. If node i has Strahler number ω(i) = 1, then it has no children – it is a leaf
node, and there’s nothing left to do down this branch. Otherwise, i’s Strahler
number is ω(i) > 1, and imust have 2-5 children. Roll d4+1 (or d6, rerolling
on 1 or 6) to determine how many children i has.

4. Roll one d6 to choose between the following two cases:

a. Case (1-3): Two of i’s children have Strahler number ω(i) − 1, and the
rest have Strahler number 1, . . . , ω(i) − 1 (choose at random)

b. Case (4-6): One child has the same Strahler number as i, namely ω(i),
one has Strahler number ω(i) − 1, and the rest have Strahler numbers
1, . . . , ω(i) − 2 (can’t be less than one; choose at random).

5. Recurse on steps (3-5) for each of i’s children.

Here’s an illustration from Wikipedia of a tree obeying these rules. The nodes are
labeled with their Strahler number.
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Denote by N(ω) the number of nodes with Strahler number ω.
N(ω)

N(ω+1) = RB

The number RB is called the bifurcation ratio and it ranges from 2 to 5, by design.

4.4.1 Length

Denote by L(ω) the mean length of nodes with Strahler number ω. Then
L(ω+1)

L(ω) = RL

is called the length ratio, and it ranges from 1.5 to 3.5. So you can assign a rea-
sonable length L to your leaf nodes (ω = 1), and then assign lengths L(ω + 1) =
(L(ω))(2.5 + 2dF

2 ) to nodes with higher Strahler numbers.

4.4.2 Area

There’s a similar law that governs area:
A(ω+1)

A(ω) = RA

In this case,RA ranges from 3 to 6. You could simulate areas for nodes with higher
Strahler numbers using A(ω + 1) = (A(ω))(4.5 + 3dF

2 ). Once you determine area
and length, you just need to compute width=area/length.

21



4.4.3 Slope

Slope follows a similar law to length and area. Keep in mind that water flows
downhill. The leaves have the steepest slope – they may be vertical. The root
node is the most horizontal. Just to make things easy, I’d set the slope of the root
node to S(N) = N

√
90◦ and the slope of nodes with lower Strahler numbers to

S(ω) = S(N)ω.

For example, in a tree with Strahler NumberN = 4, I’d useS(4) ≈ 3◦, S(3) ≈ 9.5◦,
S(2) ≈ 30◦, and S(1) ≈ 90◦.

4.4.4 Dimension

In the thread on Dreams in the Witch House, I recently posted about fractal dimen-
sions. I don’t want to rehash any of that here. But I do want to note that stream
lengths have a fractal dimension of about 1.2, and cave lengths have a fractal di-
mension of about 1.4.

5 Appendix: Learn You Some Graph Theory

This appendix isn’t intended as a rigorous presentation of graph theory – just a
basic overview to familiarize you with some of the terminology and concepts useful
for flow-chart style mapping….

A graph is a set vertices and a set of edges. An edge connects a pair of vertices.

The order of a graph is its vertex count. The size of a graph is its edge count. The
degree of a vertex is the number of incident edges.

Graph theorists use specialized jargon to describe a sequence of vertices and edges
in a graph. If the first vertex in the sequence is the same as the last vertex, then
the sequence is closed; otherwise it’s open:

Term Vertices may repeat? Edges may repeat? Open or closed?

Walk Yes Yes Either
Trail Yes No Open
Circuit Yes No Closed
Path No No Open
Cycle No, except the first and last No Closed

Some more terminology: A loop is an edge that connects a vertex to itself. N.B.
What we were calling a “loop” geologically is called a “cycle” graph-theoretically.

Multi-edges are two or more edges between the same pair of vertices. In a directed
graph, edges have a direction (like a one-way door); otherwise, it the graph is
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undirected. Simple graphs are undirected graphs without loops or multi-edges.
Multi-graphs have multiedges, but no loops. Pseudographs have multi-edges and
loops. Connected graphs have a path between every pair of vertices. Disconnected
graphs have more than one component. A tree is a connected acyclic graph. A
forest is an acyclic graph (“forest” usually implies it is disconnected, i.e., a forest
has several components, each of which is a tree).

There are 2(V
2 ) possible simple graphs of order V. The mean degree of a vertex in

a graph of order V and size E is deg = 2E
V .

Planar graphs are graphs that you can draw in a 2D plane without edge crossings.
There are many ways to draw a planar graph, and one specific drawing of a planar
graph is called a plane graph. Tutte’s spring theorem says that you can draw
any planar graph with straight edges. The regions enclosed by a planar graph
are called its interior faces; and the region surrounding the planar graph is its
exterior (or infinite) face. Euler discovered the following relationship for a planar
graph. Let:

• V = the order of the graph
• E = the size of the graph
• F = the number of faces (interior and exterior)
• C = the number of connected components of the graph

Then Euler’s formula says that for a planar graph

V − E + F − C = 1

For planar graphs, E ≤ 3V − 6.

For trees, E = V − 1 and F = 1.

A path graph Pn is a tree with n vertices, n − 1 edges, exactly two leaves (i.e.,
vertices of degree 1), and all other vertices degree 2. Here is P5:

The number of independent cycles R in an undirected graph is given by

R = E − V + C

This number R goes by many names:

• circuit rank: R

• cyclomatic number
• nullity
• first Betti number: b1
• dimension of the first Homology group: dim H1
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R provides a very easy way to detect cycles in undirected graphs.

Cycle detection in graphs has important real-life applications, e.g., detecting “fake
news” in social media and finding arbitrage pricing in trade networks.

The adjacency matrix of a graph with V vertices is the V × V matrix A such that
[A]ij = 1 if there is an edge from vertex i to vertex j and 0 otherwise. The incidence
matrix of a graph with V vertices and E edges is a V × E matrix M such that
[M ]ij = 1 if edge j is incident to vertex i and 0 otherwise. The degree matrix of a
graph with V vertices is the V ×V matrix D such that [D]ij = the degree of vertex i
if i = j and 0 otherwise. It is possible to use linear algebra to compute the number
of connected components C, the circuit rank R, the number of walks from vertex i
to vertex j in s steps, and other properties of a graph from the matrices A, M, and
D.

You can do calculus on graphs: discrete exterior calculus. Stokes’s theorem works
on graphs:

∫
M

dω =
∫

∂M
ω. And there are graph analogs of grad, curl and div that

preserve their properties, e.g., curl ◦ grad = 0 and div ◦ curl = 0.

The cycle graph on n vertices is denoted Cn. It has n vertices and n edges, and
every vertex has degree 2. Here is C5:

The wheel graph Wn consists of a single vertex connected to all the vertices of Cn.
Here is W4:

A subgraph of a graph is a subset of vertices and edges; the vertex subset must
include all of the endpoints of the edge set.

Two graphs are isomorphic if they have the same structure: there is a one-to-one
incidence preserving correspondence between the vertices and edges in one graph
and the vertices and edges in the other graph.

The subdivision of an edge with endpoints (u, v) is obtained by removing the edge
(u, v), adding a new vertex w, and adding two edges (u, w) and (w, v). A graph
subdivision is obtained through one or more edge subdivisions. Two graphs F and
G are homeomorphic if there is an isomorphism from a subdivision of F to a subdi-
vision of G.
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A complete graph has an edge between every pair of vertices. A complete graph
on n vertices is denotedKn. For example, K1 is the graph with exactly one vertex
and no edges. K5 is called the pentatope graph, and it is the smallest non-planar
graph:

A bipartite graph is a graph whose vertices may be partitioned into two sets A and B
such that all edges have one endpoint in A and the other in B. A complete bipartite
graph has an edge from every vertex in A to every vertex in B. If the vertex counts
of A and B are m and n, then it is denoted Km,n. The graph K1,n is called a star.
The graph K1,3 is called a claw. And the graph K3,3 is called the utility graph.
K3,3 is non-planar:

Kuratowski’s Theorem: A graph is planar if and only if it has no subgraph that
is a subdivision of K5 or K3,3. Equivalently, a graph is non-planar if and only if it
has a subgraph homeomorphic to the pentatope graph or the utility graph.

A spanning tree of an undirected graph is a subgraph that is a tree which has all
of the vertices, but with minimum possible number of edges; it is not necessarily
unique.

The complement of a graph is obtained by exchanging edges and non-edges. The
complement of graph G is usually denoted with an overline/bar/macron: Ḡ. A
cograph is a graph that can be generated from the single-vertex graphK1 by com-
plementation and disjoint union.

The dual G∗ of a planar graphG is defined so thatG∗ has a vertex whereverG has
a face, andG∗ has an edge wherever two faces ofG are separated by an edge. The
dual of a simple graph may be a pseudograph. The dual may not be unique when
the planar graph has several plane graphs. A graph that’s isomorphic to its dual is
called self-dual. Wheel graphs are self-dual. The following correspondence exists
between the vertex counts, edge counts and face counts of planar graphs and their
duals:
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V ∗ = F

E∗ = E

F ∗ = V

Therefore, for a connected (i.e., C = 1) simple graph, Euler’s formula implies

V − E + F = 2

and

V ∗ − E∗ + F ∗ = 2

Besides subdivision, complementation and dual, there are many other operations
that may be performed on graphs, e.g., vertex and edge addition and subtraction;
products of graphs; edge contraction (the inverse of subdivision); and finding the
line graph of a graph.

A convex regular polygon has all sides equal and all interior angles equal. A Pla-
tonic Solid is a polyhedron whose faces are all identical convex regular polygons.
Each polyhedron has an associated planar graph, called a polyhedral graph or poly-
hedra. The following illustration (excerpted from here) shows the 5 Platonic solids
and their associated planar graphs. You can use Euler’s formula to prove that there
are only 5 Platonic solids.
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Here is a table summarizing some important graph-theoretic properties of the 5
Platonic Solids:

Name V E F Dual

Tetrahedron 4 6 4 self-dual
Cube 8 12 6 Octahedron
Octahedron 6 12 8 Cube
Dodecahedron 20 30 12 Icosahedron
Icosahedron 12 30 20 Dodecahedron

Beyond graphs. You can make graphs more abstract by allowing edges to con-
nect any number of vertices. This leads to abstract simplicial complexes and hy-
pergraphs. Graphs are 1-D topological manifolds, with a 0-D topological invariant
(number of connected components) and a 1-D topological invariant (number of in-
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dependent cycles). Abstract simplicial complexes also have higher dimensional
topological invariants: 2-D (number of “bubbles” or “voids”) and so on. You com-
pute these topological invariants using a branch of linear algebra called homology.
This has important applications in tomography (e.g., CAT scans and MRIs) and
other kinds of image analysis.

5.1 Example: The House Graph

Property Value

Order / vertex count V 5
Size / edge count E 6
Faces F 3
Connected components C 1
Euler’s formula V - E + F - C = 1 True
Number of independent cycles R = E - V + C 2
Complement house = P5

The following illustration labels the graph’s three faces: Face-1 and Face-2 are
interior. And Face-3 is exterior.

The following illustration shows all the cycles in the graph. Note that there are
three cycles: One around the edges surrounding each of the two interior faces (in
green) plus a third around the exterior face (in red). With the given orientations,
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the green cycles traverse edge e in opposite directions, so that they cancel each
other out along this edge when we add them, resulting in the red cycle. So, only
two of the three cycles are independent – the red cycle around the exterior face is
the sum of the green cycles around the two interior face. Thus, the house graph
has circuit rank R = 2.

Here is an illustration showing how to construct its graph complement, house = P5.
Non-edges are shown in dotted lines:

Finally, here is an illustration showing how to construct its dual, house∗. The dual’s
vertices are shown as squares, and its edges are shown as dotted lines. Notice it’s
a multigraph:
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You can find out more about the house graph at WolframAlpha.

6 Document Information

This is version 0.5 (Monday, May 8, 2017).

The following 6 images were excerpted from external sources for commentary and
educational use: maze generation, cave patterns, jewel cave, beer quarry caves,
Strahler number (tree), Platonic Solids. In the text, I’ve linked the sources of these
images.

The HTML version uses pandoc.css and MathJax.

With these limited exceptions, the remainder of the document is public domain,
and you may use it or any part of it any way you see fit.

You can find this document online in several formats:

• HTML
• PDF
• Markdown
• Zip - contains all versions and source code
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